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Abstract: The dendritic form is one of the most common forms of crystals growing from supercooled melts and
supersaturated solutions. In recent decades, an analytical theory has been developed that describes a stable dendrite
growth mode under the conditions of a conductive heat and mass transfer process. However, in experiments, the
growth of dendritic crystals is often observed under the conditions of convective fluid flow. In the present work, the
theory of the growth of dendritic crystals is developed taking into account the convective mechanism of heat and
mass transfer at the crystal-melt interface. A stable mode of dendritic growth in the case of intense convective flows
near the steady-state growing dendritic tip is analyzed. The selection theory determining a stable growth mode in
the vicinity of parabolic solutions as well as the undercooling balance condition are used to find the dendrite tip
velocity and its tip diameter as functions of the melt undercooling. It is shown that the theoretical predictions in the
case of convective boundary conditions are in agreement with experimental data for small undercoolings. In
addition, the convective and conductive heat and mass transfer mechanisms near the growing dendritic surfaces are
compared. Our calculations show that the convective boundary conditions essentially influence the stable mode of
dendriticgrowth.
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1 Introduction

Dendrites are one of the most common morphologi-
cal formations that appear as a result of crystallization
from the metastable liquid state of melts and solutions
[1–8] (figure 1). The shape and kinetics of dendritic
crystals depend on the anisotropy of the solid/liquid
interface and the processes of heat and mass trans-
fer [9–11]. The experimental data demonstrate that
the internal structure of crystallized melts and so-
lutions strongly depends on the metastability degree
(undercooling or supersaturation), the crystallization
rate, and the characteristic diameter of the dendrite
vertices [12–14]. Convection in the liquid phase also
plays an important role in the growth of dendritic crys-
tals, changing the conditions of heat and mass trans-

fer and leading to mechanical deformations of growth
structures [15–17].

The authors of papers [18–20] show that convec-
tive fluid flows increase the crystallization rate, com-
press the thermal and concentration boundary layers,
and also lead to an increase in the thermal and concen-
tration gradients in front of growing dendritic crystals.
These physical features are usually not taken into ac-
count in dendritic growth models. So, for example, a
dendritic growth model is usually used with boundary
conditions of the conductive type at the crystal/liquid
interface [13, 21–28]. Such models describe a large
number of experimental data for various Péclet and
Reynolds numbers under the assumption of laminar
flow in the liquid phase (or in the absence of flow).
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Figure 1: A scheme of dendritic crystals.

However, there are experimental data on dendritic
growth in liquids with intense (turbulent) flows at the
interfacial boundaries of growing crystals [29, 30]. In
this case, the mechanism of heat and mass transfer
ceases to be conductive and is described by the bound-
ary conditions of the convective type [29, 30].

This article discusses the influence of the bound-
ary conditions of convective heat and mass transfer at
the interfacial boundaries of dendritic crystals on the
crystallization process. Namely, in this work, the the-
ory of microscopic solvability is compared with ex-
perimental data on the growth of dendritic crystals
from Ti45Al55 melts [19].

2 Stability Criterion for Convective
Heat and Mass Transport

In this work, we will consider a low-speed crystalliza-
tion process with intense fluid motion near the den-
dritic surface. In this case, the process of heat and
mass transfer at the interface can be considered as
convective, and the boundary conditions of the bal-
ance of heat and mass can be written in the form
of convective-type conditions [29–31]. To find a se-
lection criterion for a stable dendritic growth mode,
we will use the boundary conditions in the pres-
ence of convective heat and mass transfer [31]. This
type of heat and mass transfer mechanism occurs due
to the turbulent flows near the solid/liquid interface
[29, 30] or as a result of thermo-electrical hydrody-
namic fluxes [12, 18] shown in figure 2.

The selection criterion determining a stable com-
bination between the dendrite tip velocity V and its
tip diameter ρ is given by [32]

σ∗ ≡ 2d0DT

ρ2V
=

2σ0
√
αdDTβ1
ρ

Figure 2: A scheme of dendritic growth in the pres-
ence of inrense convective flow. Arrows show the flow
velocity.
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where σ0 is the solvability constant, d0 is the cap-
illary constant, ρl is the density of liquid, k0 is the
solute segregation coefficient, αd is the surface en-
ergy stiffness, β0 is the kinetic growth coefficient, µ
is the selection parameter, m is the liquidus slope, cl
is the heat capacity, u∗ is the friction velocity, TQ is
the hypercooling, and ks is the thermal conductivity
of solid. Here αh and αs are the convective heat and
mass transfer coefficients, αh/αs = (DT /DC)n with
2/3 < n < 4/5 (DT and DC represent the thermal
diffusivity and diffusion coefficient).
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3 Undercooling Balance

The second condition connecting V and ρ is given by
the undercooling balance that represents the sum of
different contributions. So, the total undercooling ∆T
takes the form [13]

∆T = ∆TT + ∆TC + ∆TR + ∆TK . (2)

The thermal contribution ∆TT can be written out
in the form

∆TT = Ti − Tl∞ =
TQV ks

αhρlclu∗DT
, (3)

where Ti and Tl∞ represent the temperatures at the
interface and far from it.

The contribution ∆TC arising from the solute
concentration field reads

∆TC = m(Ci − Cl∞) =
(1− k0)V mCl∞
αsu∗ − (1− k0)V

, (4)

where Ci and Cl∞ stand for the solute concentrations
at the interface and far from it.

The contributions ∆TR and ∆TK appearing due
to the interface curvature (the Gibbs-Thomson effect)
and the attachement kinetics of atoms at the interface
take the form

∆TR =
4d0TQ
ρ

, ∆TK =
V

µk
, (5)

where µk is the kinetic coefficient.
Combining expressions (2)-(5), we obtain the fol-

lowing explicit function

ρ(V ) =
4d0TQ

∆T −∆TT (V )−∆TC(V )− V

µk

. (6)

Now combining the selection criterion (1) and the
modified undercooling balance (6), we arrive at the
following implicit function determining the dendrite
tip velocity V

ρ2(V )V

2d0DT
σ∗ (ρ(V ), V ) = 1, (7)

where σ∗ is defined by the right-hand side of expres-
sion (1).

Thus, expression (7) determines the dendrite tip
velocity V as a function of total undercooling ∆T .
The dendrite tip diameter ρ as a function of ∆T can
be found from the modified undercooling balance (6).

Figure 3: Dendrite tip velocity versus the melt un-
dercooling for Ti45Al55 alloy. The dashed (blue) and
dash-dotted (green) lines show the results for the con-
ductive mechanism of heat and mass transfer in the
absence (U = 0 m/s) and presence (U = 0.5 m/s)
of forced convective flow [34]. The solid line (red)
is plotted accordingly to the present model (expres-
sion (7)). Theoretical predictions are compared with
experimental data [19] for small undercoolings. The
model parameters used in calculations are σ0 = 1.17,
d0 = 9.28 · 10−10 m, DT = 2.5 · 10−6 m2 s−1,
ρl = 2.46 · 103 kg m−3, k0 = 0.86, Cl∞ = 55 at%,
αd = 0.3, β0 = 1.88 · 10−2 s m−1, µ = 10−3, m =
8.78 K at%−1, cl = 1237 J kg−1 K−1, αh = 3.55,
u∗ = 4 m s−1, TQ = 272.64 K, ks = 29.22 W m−1

K−1.

In the case of conductive heat and mass transfer
boundary conditions the selection criterion takes the
form [7, 32, 33]

σ∗ =
σ0α
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Figure 4: The dendrite tip diameter versus its tip ve-
locity. Panel (a) compares the convective and con-
ductive heat and mass transfer mechanisms. Panel
(b) shows the ingluence of friction velocity on ρ and
V . Parameters used in calculations are αh = 0.0095,
ks = 2.03 W m−1 C−1, ρl = 103 kg m−3, cl = 4187
W s kg−1, d0 = 2.8 · 10−10 m, αd = 0.35, σ0 = 0.17,
DT = 1.17 · 10−7 m2 s−1, µ = 0, β1 = β0 = 0.
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U is the fluid velocity at infinity, Pf = ρU/(2DT ),
b̃ is the stability constant, < = ρU/ν is the Reynolds
number, ν is the kinematic viscosity, and IC(∞) is
determined in [32].

Criterion (8) should be supplemented with the
corresponding undercooling balance condition, which
coincides with expression (2) with contributions ∆TT ,
∆TC , ∆TR, and ∆TK found in [32] for two- and
three-dimensional geometries.

The convective and conductive heat and mass
transfer conditions [34] are compared with experi-
mental data [19] in figure 3. Note that the theoreti-
cal predictions obtained in [34] are in good agreement
with experiments only in the range of moderate and
large undercoolings (see, for details, [34]). If we are
dealing with the case of small growth velocities, the
theory based on conductive-type boundary conditions
does not agree with experimental data (the theoreti-
cal curves shown in figure 3 by the dashed and dash-
dotted lines lie outside of the experimental error bars).
However, the convective heat and mass transfer mech-
anism at the solid/liquid boundary leads to the func-
tion V (∆T ) (solid line in figure 2) that corresponds
to the experimental error bars at small undercoolings.
Indeed, in the case of intense fluid flows around the
growing dendrites, one can expect a transition from
the laminar regime to the turbulent regime in levitated
droplets [35]. This transition can be explained by the
fact that the intense fluid curls lead to the convective
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heat and mass transfer mechanism in the vicinity of
dendritic tips where the flow is strongly turbulent [35].

In figure 4, we illustrate the influence of convec-
tive boundary conditions on dendritic growth. The
convective curve (dotted line) lies above the cor-
responding conductive curve (solid line). In other
words, the dendrite tip diameter is greater in the case
of convective heat and mass transfer than in the case of
the conductive transfer mechanism. The greater val-
ues of friction velocity u∗ also lead to larger values of
the dendrite tip diameter.

4 Conclusion

In summary, the theory of stable dendritic growth in
a binary melt with allowance for the convective heat
and mass transfer mechanism at the solid/liquid sur-
faces of dendritic tips was developed. The theoretical
predictions are compared with experiments and pre-
vious theory based on the conductive heat and mass
transfer boundary conditions. The convective type of
heat and mass transfer around the growing solid sur-
faces arises in a thin boundary layer, where the liq-
uid moves chaotically so that the conductive heat and
mass fluxes should be changed by Newtonian bound-
ary conditions. Their main features consist of the fact
that the heat and mass fluxes at the growing solid sur-
faces become convective and depend on the friction
velocity u∗.

To test the theory with convective boundary con-
ditions, we used two equations for the theoretical de-
termination of the dendrite tip velocity and its tip
diameter: the selection criterion and the undercool-
ing balance. These equations are reduced to a single
one defining an implicit function V (∆T ). This func-
tion was tested against experimental data in the range
of small undercoolings. The velocity-undercooling
dependence based on the convective heat- and mass
transfer mechanism well describes experiments on the
solidification of Ti45Al55 for small undercoolings.

As a final note, the mechanism of heat and mass
transfer near the growing dendritic surfaces can be of
a mixed type, i.e. it can contain the convective and
conductive fluxes. Such a theory containing the mixed
type of heat and mass transfer at the dendritic bound-
ary can be developed on the basis of the present anal-
ysis and previous theory summarized in [36–39]. This
subject represents a new research direction for future
investigations.
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